Рубрика: 2020-2021 կենսաբանություն

Դաս 17

Տեսակ, պոպուլյացիա, էվոլյուցիայի գլխավոր ուղիները՝ արոմորֆոզ, իդեոադապտացիա, ընդհանուր դեգեներացիա:

Էվոլյուցիայի գլխավոր ուղիներն են արոմորֆոզները, իդիոդապտացիաները և ընդհանուր դեգեներացիաները, որոնք հանգեցնում են կենդանաբանական առաջադիմության՝ այսինքն մեծանում է տվյալ տեսակի առանձնասենյակների թվաքանակը, ընդարձակում է արեալը, առաջանում են նոր պոպուլյացիաներ:
Արոմորֆոզ: Արոմորֆոզներն այնպիսի էվոլյուցիոն փոփոխություններ են, որոնք օրգանիզմները տանում են դեպի կազմավորվածության ընդհանուր վերելք, բարդացնում նրանց կառուցվածքը, բարձրացնում կենսագործոնեության ուժգնությունը:
Օրգանական աշխարհի էվոլյուցիայի վաղ փուլերի խոշոր արոմորֆոզներ են՝ բույսերի ֆոտոսինթեզի գործընթացի առաջացումը, օրգանիզմների՝ սեռական ճանապարհով բազմացումը, ներքին բեղմնավորումն և հայտ գալը: Բույսերի զարգացման մեջ խոշոր արոմորֆոզ էր սպորներով բազմացումից սերմերով բազմացման անցնելը: Ողնաշարավոր կենդանիների զարգացման ընթացքում խոշոր արոմորֆոզների էին քորդայի, խռիկային և թոքային շնչառության, հնգամատ տիպի վերջույթների առաջացումը և այլն: Արոմորֆոզը Գոյության կռվում նշանակալից առավելություններ է տալիս օրգանիզմին, հնարավորություն ընձեռում նրան հարմարվելու նոր միջավայրին, օժանդակում է պոպուլյացիաներում գոյատևման բարձրացման և մահացության իջեցմանը:

Рубрика: 2020-2021 կենսաբանություն

Դաս 16

Գոյության կռիվ, բնական ընտրություն, օրգանիզմների հարմարվածությունը արտաքին միջավայրին:

Տարբերվում է գոյության կռվի երեք տեսակ ներտեսակային, միջտեսակային և կռիվ անօրգանական աշխարհի անբարենպաստ պայմանների դեմ:   Ներտեսակային կռիվը ամենատարածվածն է և տեղի է ունենում նույն տեսակի կենդանիների միջև: Դրանք կռվում են եգի, տարածքի և սննդի համար:    Միջտեսակայինը կռիվն է տարբեր տեսակների պատկանող կենդանիների միջև: Գոյություն ունի պայքար անբարենպաստ պայմանների դեմ ևս: Դարվինն ասել է, որ Անգլիայում ցրտաշունչ ձմեռվա ընթացքում սատկել են թռչունների 80 %-ը: Նրանք չեն կարողացել պայքարել:
Արհեստական ընտրություն: Ըստ Դարվինի ընտանի կենդանիները հարմարվել են մարդուն այսինքն պարդը ստեղծել է արհեստական ընտրություն և վարժեցնելով կենդանուն առաջացրել է նոր ցեղատեսակ:

Բնական ընտրություն: Դարվինը նկատեց, որ միևնույն տեսակի առաձնյակներում ևս նկատվում է կենդանի օրգանիզմների տարբերություն: Նա հասկացավ, որ նոր ծնված կենդանիների մի մասը, որ առավել հարմարված էր ոչնչացնում են չհարմարվածներին: Սա անվանվեց բնական ընտրություն:

Շարժական ընտրությունը արտաքին միջավայրի փոփոխությունից կախված առաձնյակի փոփոխությունն է: Երբ արդյունաբերական փոշու պատճառով ծառերը սևացան սև թիթեռների քանակը աճեց, քանի որ դրանք ծառերի սև բների վրա չէին երևում ու դրանց որսալը դժվար էր:

Կայունացող ընտրությունը գործում է միջավայրի հաստատուն պայմաններում և ամրապտդում է օրգանիզմի ձեռք բերած օգտակար հատկանիշները:

Рубрика: 2020-2021 կենսաբանություն

Դաս 15

Դարվինի էվոլյուցիոն տեսություն

Դարվինը բացահայտեց էվոլյուցիայի շարժիչ ուժերը, որոնցով բացատրեց տեսակառաջացումը։ Էվոլյուցիայի շարժիչ ուժերն են՝ փոփոխականությունը, ժառանգականությունը, բնական ընտրությունը: Դարվինը գտնում էր, որ բոլոր կենդանի օրգանիզմները օժտված են փոփոխականության հատկությամբ և ըստ որի տարբերում էր փոփոխականության 3 ձև` որոշակի, խմբակային կամ ոչ ժառանգական, անորոշ, անհատական կամ ժառանգական, հարաբերակցական:

Рубрика: 2020-2021 կենսաբանություն

Դաս 14

Մուտացիա

Մուտացիան գենոտիպի կայուն փոփոխությունն է որն իրականանում է արտաքին կամ ներքին միջավայրի ազդեցության տակ։ Մուտացիաները լինում են՝ ինքնաբուխ, առաջանում են ինքնաբերաբար օրգանիզմի ողջ կյանքի ընթացքում իր համար նորմալ շրջակա միջավայրի պայմանների դեպքում և աջակցված, գենոմի ժառանգվող փոփոխությունները, որոնք առաջանում են շրջակա միջավայրի ոչ բարենպաստ ազդեցության կամ արհեստական պայմաններում այս կամ այն մուտագեն ազդեցությունների արդյունում։ Մուտացիաների առաջացմանը հանգեցնող հիմնական պրոցեսներն են՝ ԴՆԹ-ների կրկնապատկումը, ԴՆԹ-ների վերականգնման խախտումները:

Մուտացիաների դասակարգում

Գոյություն ունեն մուտացիաների մի քանի դասակարգումներ՝ ըստ տարբեր չափանիշների․
գենոմային, քրոմոսոմային, գենային։

Գենոմային պոլիպլոիդիզացում

Օրգանիզմների կամ բջիջների առաջացում, որոնց գենոմը ներկայացված է քրոմոսոմների երկուսից ավել հավաքածուով և անեուպլոիդիացում` գապլոիդ հավաքածուին ոչ բազմապատիկ քրոմոսոմների թվի փոփոխություն։ Կախված քրոմոսոմային հավաքածուների ծագումից՝ պոլիպլոիդների մեջ տարբերում են՝ ալլոպոլիպլոիդներ, որոնք ունեն տարբեր տեսակի՝ հիբրիդացումից ստացված քրոմոսոմների ավաքածուներ, աուտոպոլիպլոիդներ, որոնց մոտ տեղի է ունենում սեփական գենոմի քրոմոսոմների թվի ավելացում n անգամ։

Քրոմոսոմային մուտացիա

Այդ ժամանակ տեղի են ունենում առանձին քրոմոսոմների կառուցվածքի խոշոր փոփոխություներ։ Այդ դեպքում դիտվում է մեկ կամ մի քանի քրոմոսոմների գենետիկական նյութի կորուստ  կամ կրկնապատկում, ինչպես նաև առանձին քրոմոսոմների հատվածների կողմնորոշման փոփոխություն, և գենետիկական նյութի տեղափոխություն մեկ քրոմոսոմից մյուսի վրա: Գենային մակարդակով ԴՆԹ-ի սկզբնական կառուցվածքի փոփոխությունները մուտացիայի ազդեցության տակ նվազ նշանակալից են, քան քրոմոսոմային մուտացիաների դեքում, սակայն գենային մուտացիաերը առավել հաճախ են հանդիպում։

Գենային մուտացիա

Դրա արդյունքում տեղի են ունենում մեկ կամ մի քանի նուկլեոտիդների փոփոխություններ, դելեցիաներ, ներդրումներ և տրանսլոկացիաներ, դուպլիկացիաներ և ինվերսիաներ՝ գեների տարբեր հատվածներում, այն դեպքում, երբ մուտացիայի ազդեցության տակ փոփոխվում է միայն մեկ նուկլեոտիդ, ապա խոսքը կետային մուտացիաների մասին է։ Քանի որ ԴՆԹ-ի կազմի մեջ մտնում են միայն երկու տիպի ազոտային միացություն ներ` պուրիններ և պիրիմիդիններ, ապա հիմքերի փոփոխությամբ բոլոր կետային մուտացիաները բաժանվում են երկու դասի՝ տրանզիցիա և տրանսվերսիա։

Մուտացիաների հետևանքները բջջի և օրգանիզմի համար

 Մուտացիաները, որոնք վատթարացնում են բջջի գործունեությունը բազմաբջիջ օրգանիզմում, հաճախ հանգեցնում են բջջի վերացմանը։ Եթե ներքին և արտաքին բջջային մեխանիզմները չեն հայտնաբերել մուտացիան և բջիջը անցել է բաժանումը, ապա մուտանտային գենը փոխանցվում է բջջի բոլոր սերունդներին, և առավել հաճախ հանգեցնում նրան, որ բոլոր այդ բջիջները սկսում են այլ կերպ գործել։ Բարդ բազմաբջիջ օրգանիզմի սոմատիկ բջիջների մուտացիան կարող է բերել չարորակ կամ լավորակ նորագոյացությունների, սեռական բջջում՝ սերնդի ամբողջ օրգանիզմի հատկությունների փոփոխություն։ Գոյատևման հաստատուն պայմաններում առանձնյակներից շատերն ունեն օպտիմալին մոտ գենոտիպ, իսկ մուտացիաներն առաջացնում են օրգանիզմի գործառույթների խախտում, նվազեցնում նրա հարմարվածությունը և կարող են բերել առանձնյակի մահվան։ Սակայն, շատ հազվադեպ մուտացիան կարող է նպաստել օրգանիզմի մոտ օգտակար հատկանիշների առաջացմանը, և այդ դեպքում մուտացիաները շրջակա միջավայրին հարմարվելու միջոցներ են ձեռք բերում և համապատասխանաբար կոչվում են հարմարվողական։

Մուտացիաների դերն էվոլյուցիոն պրոցեսում

Գոյության պայմանների զգալի փոփոխության դեպքում այն մուտացիաները, որոնք ավելի վաղ վնասակար էին, կարող են դառնալ օգտակար։ Այսպես՝ մուտացիաները բնական ընտրության նյութ են։ Մելանիստ մուտանտներն առաջին անգամ գիտնականների կողմից հայտնաբերվել էին կեչու թրթուրի պոպուլյացիաներում 19-րդ դարի կեսերին Անգլիայում՝ իրենց բնորոշ առավել բաց գունավորում ունեցող առանձնայակների մեջ։ Մուգ գունավորումն առաջ է եկել մեկ գենի մուտացիայի արդյունքում։ Թիթեռներն իրենց օրն անցկացնում են ծառերի բների և ճյուղերի վրա, որոնք սովորաբար ծածկված են քարաքոսներով, որոնց հիմնագույնի վրա գորշ գունավորումը քողարկող է։ Մթնոլորտի աղտոտմամբ ուղեկցվող արդյունաբերական հեղափոխության արդյունքում քարաքոսները մահացան, իսկ կեչիների բաց գունավորում ունեցող բները ծածկվեցին մրով։ Արդյունքում 20-րդ դարի կեսերին արդյունաբերական շրջաններում մուգ գունավորումը գրեթե ամբողջությամբ դուրս մղեց բացին։ Ապացուցված էր, որ սև ձևի գերադասելի գոյատևման գլխավոր պատճառը թռչունների գիշատչ դերն է, որոնք աղտոտված վայրերում ընտրողաբար ուտում էին բաց գունավորում ունեցող թիթեռներին։

Рубрика: 2020-2021 կենսաբանություն

Դաս 6

Վիրուս

Վիրուս բառը լատիներենից  թարկմանաբար նշանակում է թույն։ Վիրուսը ոչ բջջային կառուցվածք ունեցող հարուցիչ է, որը բազմանում է միայն կենդանի բջիջների ներսում։ Վիրուսները վարակում են կյանքի բոլոր բջջային ձևերը՝ կենդանիներից ու բույսերից մինչև բակտերիաներ և արքեաներ։ Ընդհանրապես հայտնաբերվել և մանրամասն նկարագրվել են շուրջ 5000 տեսակի տարբեր վիրուսներ, չնայած այն բանին, որ հայտնի են վիրուսների միլիոնավոր ձևեր։

Վիրուսիների կառուցվածքը

Վիրուսներն ունեն ձևերի և չափերի հսկայական բազմազանություն։ Որպես կանոն, վիրուսներն ավելի փոքր են, քան բակտերիաները։ Վիրուսների մեծ մասը 15–300 նանոմետր է սահմաններում։ Հասուն վիրուսային մասնիկը՝ վիրիոնը, կազմված է սպիտակուցային պաշտպանիչ թաղանթով՝ կապսիդով պատված նուկլեինաթթվից։ Կապսիդը, իր հերթին, կառուցվում է միանման սպիտակուցային ենթամիավորներից՝ կապսոմերներից։ Վիրուսները կարող են ունենալ նաև լիպիդային պատյան, որը ձևավորվում է տիրոջ բջջաթաղանթից։ Լիպիդային պատյանը ծածկում է կապսիդը և հաճախ անվանվանվում է նաև «սուպերկապսիդ»։ Կապսիդի սպիտակուցները գաղտնագրվում են վիրուսային գենոմի միջոցով և նրանց ձևը ընկած է վիրուսների ձևաբանական դասակարգման հիմքում։ Առավել բարդ կառուցվածք ունեցող վիրուսները կարող են գաղտնագրել նաև հատուկ սպիտակուցներ, որոնք օգնում են կապսիդի հավաքմանը։ Սպիտակուցների և նուկլեինաթթուների համակարգերը հայտնի են նուկլեոպրոտեիններ անվամբ. նմանապես՝ կապսիդի և նուկլեինաթթովի համալիրն անվանվում է նուկլեոկապսիդ։ Կապսիդի և վիրիոնի ձևը կարելի է ուսումնասիրել սկանավորող ատոմաուժային մանրադիտակի միջոցով:

Էբոլա վիրուսային հիվանդութուն (ԷՎՀ)

Էբոլա վիրուսային հիվանդութունը մարդկանց և այլ պրիմատների վիրուսային հեմոռագիկ տենդ է, որը առաջացել է էբոլավիրուսներով։ 

Ախտանշաններ

Ախտանշանները հիմնականում սկսվում են վիրուսով վարակվելուց հետո 2 օրից 3 շաբաթվա ընթացքում, դրանք են՝ տենդ, կոկորդի ցավ, մկանային ցավեր և գլխացավեր։ Վերջիններիս հաջորդում են փսխումները, փորլուծությունը, ցանը, որոնք ուղեկցվում են լյարդի և երիկամների ֆունկցիոնալության նվազման հետ։ Այդ ժամանակ որոշ մարդկանց մոտ սկսվում է միաժամանակ ներքին և արտաքին արյունահոսություն։ Հիվանդությունն ունի մահացության բարձր ռիսկ՝ միջինում՝ 50%, վարակվածների 25-90% մահանում են։ Այն հաճախ տեղի է ունենում մեծ քանակությամբ հեղուկի կորստի հետևանքով առաջացած արյան ճնշման նվազման պատճառով և հիմնականում հայտնաբերվում է ախտանշանների ի հայտ գալուց 6-16 օր հետո։

Տարածման աղբյուրներ

Վիրուսը տարածվում է օրգանիզմի հեղուկների հետ անմիջական շփման միջոցով, այդպիսին է վարակված մարդկանց կամ կենդանիների արյունը։ Տարածումը նաև կարող է տեղի ունենալ վերջին ժամանակներում օրգանիզմի կենսաբանական հեղուկներով աղտոտված իրերի հետ շփումից։ Պրիմատների, այդ թվում մարդկանց, շրջանում հիվանդության փոխանցումը օդով չի արձանագրվել ոչ բնական, ոչ լաբորատոր պայմաններում։

Բուժման մեթոդներ

2015 թվականի հուլիսի տվյալներով ոչ մի դեղամիջոց չի հաստատվել որպես անվտանգ և արյունավետ Էբոլայի բուժման համար։ Էբոլա վիրուսի Արևմտյան Աֆրիկայի բռնկման սկզբում՝ 2013 թվականին, գոյություն ունեին նվազագույնը 9 տարբեր բուժման տարբերակներ։ 2014 թվականի վերջին և 2015 թվականի սկզբին անցկացվել են մի քանի փորձարկումներ, բայց որոշները չեն շարունակվել՝ ոչ բավարար արդյունավետության կամ ուսուցանվող մարդկանց բացակայության պատճառով։

Рубрика: 2020-2021 կենսաբանություն

Դաս 7

Էներգետիկ փոխանակություն

Բջիջն էներգիայով ապահովելու համար օգտագործում են օրգանական նյութեր՝ ածխաջրեր, ճարպեր, սպիտակուցներ։ Բջիջների մեծ մասը որպես էներգիայի աղբյուր առաջին հերթին օգտագործում են ածխաջրերը։ Օրինակ՝ կաթնասուննների գլխուղեղի բջիջների համար էներգիայի աղբյուր է գլյուկոզը։ Պոլիսախարիդները ներգրավվում են կատաբոլիզմի ռեակցիաներում նախապես հիդրոլիզվելով մինչև մոնոսախարիդների։ Ճարպերը նախապես ճեղքվում են գլիցերինի և ճարպաթթուների և որպես էներգիայի աղբյուր սկսվում են օգտագործվել, գլխավորապես այն ժամանակ, երբ վերջանում են ածխաջրերը։ Սակայն կան բջիջներ, որոնք գերադասում են որպես էներգիայի աղբյուր օգտագործել ճարպաթթուներին։ Սպիտակուցները նախապես ճեղքվում են ամինաթթուների և որպես էներգիայի աղբյուր են օգտագործվում, եթե վերջացել են բջջում ածխաջրերը և ճարպերը, քանի որ սպիտակուցները բջջում իրականացնում են այլ շատ կարևոր ֆունկցիաներ։ Սպիտակուցները՝ որպես էներգիայի աղբյուր կարող են օգտագործվել միայն երկար սովահարության պայմաններում։ Բջջում գլյուկոզի ճեղքումը (որի հետևանքով կատարվում է ԱԵՖ-ի սինթեզը) տեղի է ունենում իրար հաջորդող երկու փուլով։ Առաջինը կոչվում է գլիկոլիզ կամ անթթվածին ճեղքում։ Երկրորդ փուլն անվանում են շնչառություն կամ թթվածնային ճեղքում։

Գլիկոլիզ

Գլյուկոզի անթթվածին ճեղքումը կոչվում է գլիկոլիզ, որն ընդհանուր է և՛ անաէրոբ, և՛ աէրոբ ճեղքավորումների համար։

Գլիկոլիզի պրոցեսը կարելի է բաժանել երկու փուլի: Առաջին փուլի ընթացքում գլյուկոզի փոխարկումների արդյունքում ծախսվում է երկու մոլ ԱԵՖ, իսկ հետագա ճեղքավորման արդյունքում սինթեզվում է չորս մոլեկուլ ԱԵՖ, այսինքն գլիկոլիզի մաքուր ելքը կազմում է երկու մոլեկուլ ԱԵՖ։ Պիրոխաղողաթթվի վերջնական «ճակատագիրը» կախված է բջջում թթվածնի առկայությունից և քանակից։

Ավտոտրոֆ օրգանիզմներ

Ավտոտրոֆներն ընդունակ են անօրգանական նյութերից օրգանական միացություններ սինթեզել։ Դրանցից են որոշ բակտերիաներ և բոլոր կանաչ բույսերը։ Կախված այն բանից, թե էներգիայի ինչ աղբյուր են օգտագործում այդ գործընթացում, ավտոտրոֆները բաժանվում են երկու խմբի՝ ֆոտոտրոֆներ և քեմոտրոֆներ։ Ֆոտոտրոֆների համար էներգիայի աղբյուր է ծառայում լույսը, քեմոտրոֆների համար՝ քիմիական ռեակցիաները։

Հետերետրֆ օրգանիզմներ

Հետերետրֆները ընդունակ չեն անօրգանական նյութերից օրգանական միացություններ սինթեզելու։ Նրանք իրենց կենսագործունեության համար անհրաժեշտ օրգանական նյութերը ստիպված են դրսից ստանալու։ Մանրէների զգալի մասը, սնկերը, որոշ մակաբույծ բույսեր, գրեթե բոլոր կենդանիները, ինչպես նաև մարդը հետերոտրոֆներ են։ Կան կենդանի օրգանիզմներ, օրինակ՝ գիշատիչ բույսերը, որոնք ավտոտրոֆ նյութափոխանակության հետ միասին օժտված են նաև հետերոտրոֆով։

Ֆոտոսինթեզ

Ֆոտոսինթեզը ածխաթթու գազից և ջրից` լույսի ազդեցության տակ օրգանական նյութերի առաջացումն է:

Քեմոսինթեզ

Այս փոխանակությունն արտացոլում է բջջում տեղի ունեցող օրգանական նյութերի կենսասինթեզի գործընթացները։ Բջիջների շրջակա միջավայրից վերցնելով իրենց կենսագործունեության համար անհրաժեշտ հարաբերականորեն պարզ մոլեկուլներ՝ և դրանցից սինթեզում են տվյալ բջջին բնորոշ յուրատահուկ ավելի բարդ միացություններ։ Այսպես, տարբեր ամինաթթուներից սինթեզվում են բազմաթիվ սպիտակուցներ, մոնոսախարիդներից կազմում են պոլիսախարիդներ, ազոտային հիմքերն անցնում են նուկլեոտիդների մեջ դրանցից սինթեզվում են նուկլեինաթթուներ և այլն։ Բջջում ընթացող նյութերի սինթեզը կոչվում է կենսասինթեզ։ Սինթեզված միացություններն օգտագործվում են բջիջների, դրանց տարբեր օրգանոիդների կառուցման, բջիջների կենսագործունեության, ինչպես նաև օգտագործված կամ քայքայված մոլեկուլները փոխարինելու համար։

Рубрика: 2020-2021 կենսաբանություն

Դաս 5

Տրանսկրիպցիա

Տրանսկրիպցիան գենային էքսպրեսիայի առաջին քայլն է, երբ ԴՆԹ-ի որոշակի հատված ՌՆԹ-պոլիմերազի միջոցով պատճենվում է որպես ՌՆԹ (ի-ՌՆԹ)։ Համարվում է մոլեկուլային կենսաբանության կենտրոնական դոգմայի երկրորդ փուլը։ Տրանսկրիպցիայի ընթացքում ԴՆԹ շղթան կարդացվում է ՌՆԹ-պոլիմերազի օգնությամբ, որի հետևանքով սինթեզվում է ԴՆԹ շղթային կոմպլեմենտար և հակազուգահեռ ՌՆԹ շղթա։

Տրանսկրիպցիան ընթանում է հետևյալ փուլերով՝

  1. Մեկ կամ ավելի սիգմա ֆակտորներ միանում են ՌՆԹ-պոլիմերազին, որը թույլ է տալիս վերջինիս միանալ ԴՆԹ-ի որոշակի հաջորդականության՝ պրոմոտորին:
  2. ՌՆԹ-պոլիմերազը ձևավորում է տրանսկրիպցիոն պղպջակ: Այս արվում է կոմպլեմենտար ԴՆԹ նուկլեոտիդների միջև ջրածնային կապերի քանդման միջոցով։
  3. ՌՆԹ-պոլիմերազը կոմպլեմենտարության սկզբունքի համաձայն սկսում է ռիբոնուկլոտիդներից սինթեզել նոր ՌՆԹ շղթա։
  4. ՌՆԹ-պոլիմերազի օգնությամբ ձևավորվում է ՌՆԹ-ի շաքարա-ֆոսֆատային հենքը։
  5. ՌՆԹ և ԴՆԹ շղթաների միջև գործող ջրածնական կապերը քանդվում են և նոր սինթեզված ՌՆԹ շղթան ազատվում է։
  6. Եթե բջիջն ունի ձևավորված կորիզ, ապա ՌՆԹ-ն ենթարկվում է մշակման (պրոցեսինգ)։ Այս կարող է լինել պոլիադենիլացում, կեպինգ և սպլայսինգ:
  7. ՌՆԹ-ն կարող է կամ մնալ կորիզում կամ անցնի ցիտոպլազմա:

Տրանսլյացիա

Տրանսլյացիան բջջում սպիտակուցի կենսասինթեզն է, որը իրենից ներկայացնում է ՌՆԹից սպիտակուց ինֆորմացիայի փոխանցումը։

Տրանսլյացիան տեղի է ունենում ռիբոսոմներում։ Այն կատարվում է երեք փուլով` ինիցիացիա(սկիզբ), էլոնգացիա(երկարացում), տերմինացիա(ավարտ):

Սպլայսինգից հետո տՌնթ-ին միացել էին չկոդավորող հատվածներ՝ գլուխ և պոչ, դրանք, բացի պաշտպանելուց տՌՆԹ-ին. նաև օգնում է նրան միանալ ռիբոսոմին։ Ինիցիացիաի ժամանակ տՌՆԹ-ն միանում ռիբոսոմի փոքր ենթամիավորին, իսկ փՌՆԹ-ն գտնվելով ռիբոսոմի A հատվածում միանում է տՌՆԹ-ի ստարտ կոդոնին, որտեղից էլ սկսվում է տրանսյացիան։ Ստարտ կոդոնը AUG կոդոնն է, փՌՆԹ-ի անտիկոդոնը UAC, որը իր հետ բերում է ՄԵԹ ամինաթթուն։ Ինիցիացիայից հետո առաջանում է առաջին ամինաթթուն։ ՓՌՆԹ-ն տեղափոխվում է P հատված։ Մյուս փՌՆԹ-ն ճանաչում է կոդոնը և բերում համապատասխան ամինաթթուն։ Նոր եկած փՌՆԹ-ն միանում է ռիբոսոմի A հատվածին։ Այն փՌՆԹ-ն, որը գտնվում է ռիբոսոմի P հատվածում իր ամինաթթուն միացնում է A հատվածի վրա գտնվող փՌՆԹ-ի ամինաթթվին, առաջացնելով պեպտիդային կապ, և հեռանում։ A հատվածում գտնվող փՌՆԹն տեղափոխվում է ռիբոոմի P հատված։ Դրանից հետո A հատվածին է միանում նոր փՌՆԹ-ն և գործընթացը կրկնվում է։ Այս գործընթացը շարունակվում է մինչև տերմինացիան։ Էլոնգացիան շարունակվում է այնքան ժամանակ, մինչև հասնում է ստոպ կոդանին (UAA, UAG կամ UGA)։ Ի տարբերություն ստարտ կոդոնի ստոպ կոդոնները ամինաթթու չեն սինթեզում, այլ միայն հայտարարում տրանսլյացիայի ավարտը։ Ստոպ կոդոնին հասնելուն պես ամիանաթթուների ավարտուն պոլիպեպտիդը անջատվում է փՌՆԹից։ Ռիբոսոմները բաժանվում են ենթամիավորների։ Տրանսլյացիան համարվում է ավարտված։

Рубрика: 2020-2021 կենսաբանություն

Դաս 2

Նուկլեինաթթուներ և դրանց ֆունկցիաները

Նուկլեինաթթուները բարձրամոլեկուլային օրգանական միացություններ են, կենսապոլիմներ, որոնք կազմված են նուկլեոտիդներից։ Նուկլեինաթթուները հայտնաբերել է շվեյցարացի գիտնական Ֆրիդրիխ Միշերը 1868 թվականին։ Նուլեինաթթուները ունեն 2 գլխավոր տիպ՝ ռիբոնուկլեինաթթուներ (ՌՆԹ) և դեզօքսիռիբոնուկլեինաթթուներ (ԴՆԹ), որոնք առկա են բոլոր կենդանի օրգանիզմների բջիջներում։ Նուկլեինաթթուների հիմնական ֆունկցիան սպիտակուցների կառուցվածքի մասին տեղեկատվության պահպանումն է, հաջորդ սերունդներին փոխանցումը, ինչպես նաև սպիտակուցի սինթեզի իրականացումը:

Գենետիկական կոդ

Գենետիկական կոդը ժառանգական ինֆորմացիայի ծածկագրման համակարգ է նուկլեինաթթուների համակարգում: Կենդանիների, բույսերի, բակտերիաների և վիրուսների մոտ իրականացվում է նուկլեոաիդների հաջորդականությամբ։ Բնական նուկլեինաթթուներում՝ դեզօքսիռիբոնուկլեինաթթու (ԴՆԹ) և ռիբոնուկլեինաթթու (ՌՆԹ), հանդիպում են նուկլեոտիդների 5 տարածված ձևեր (յուրաքանչյուր նուկլեինաթթվում 4-ը), որոնք միմյանցից տարբերվում են ազոտային հիմքով։ ԴՆԹ պարունակում է ադենին (Ա), գուանին (Գ), ցիտոզին (Ց), թիմին (Թ), ՌՆԹ-ում թիմինի փոխարեն ուրացիլ է (Ու)։ Սպիտակուցում ամինաթթուների քանակությունն (20) ու գենետիկական կոդը կոդավորող նշանները (4) չեն համապատասխանում, հետևաբար կոդային թիվը, այսինքն՝ 1 ամինաթթուն կոդավորող նուկլեոտիդների քանակը 1 լինել չի կարող։

Рубрика: 2020-2021 կենսաբանություն

Դաս 4

Ցիտոպլազմա կամ բջջապլազմա, բջջի կիսահեղուկ կենդանի պարունակությունն է՝ բացի բջջակորիզից ու կիսահեղուկ ներքին միջավայրը։ Ցիտոպլազման կարծես հանքային աղերի և տարբեր օրգանական նյութերի ջրային լուծույթ է:

(1) Կորիզակ (2) Բջջակորիզ (3) Ռիբոսոմ (4) Ներառուկ (5) ատիկավոր էնդոպլազմային ցանց (6) Գոլջիի ապարատ (7) Բջջակմախք (8) Հարթ էնդոպլազմային ցանց (9) Միտոքոնդրիումներ (10) Վակուոլներ (11) Ցիտոպլազմա (12) Լիզոսոմ (13) Ցետրիոլ:

Կորիզակ

Կորիզակները խիտ գնդաձև գոյացություններ են, չունեն թաղանթ և անմիջականորեն շփվում է կորիզանյութի հետ։ Կորիզակները երևում են միայն չբաժանվող բջիջներում, իսկ բաժանվող բջիջներում քայքայվում են։ Իսկ երբեմն կորիզակը դիտվում է միայն բջջի բաժանման նախապատրաստական՝ ինտերֆազի շրջանում և ապա անհետանում, երբ սկսվում է բաժանման գործընթացը: Իսկ բաժանման վերջում կորիզակը նորից ձևավորվում է։

Բջջակորիզ

Բջջակորիզ կամ կորիզ, բջջի կարևոր կառուցվածքային մասը, որտեղ պահպանվում, վերարտադրվում և հաջորդ սերնդին է փոխանցվում ժառանգական ինֆորմացիան։ Բջջակորիզը համարվում է նաև բջջում նյութափոխանակության կարգավորման և բոլոր օրգանոիդների կենսագործունեության հսկողության կենտրոն:

Սովորաբար կորիզը կլոր է կամ օվալաձև, բայց լինում են և այլ ձևերի՝ խոզանակաձև, ճյուղավոր, մատնոցանման, ձողիկաձև, հատվածավոր և այլն։ Կորիզների չափերը, ձևը կախված են բջիջների չափերից ու ձևերից։ Սովորաբար կորիզը կազմում է բջջի 20%-ը։ Բջիջների մեծ մասն ունի մեկ կորիզ, բայց կան և մեկից ավելի, նույնիսկ բազմաթիվ կորիզներ պարունակող բջիջներ։ Բջիջները բազմակորիզ են. օրինակ՝ ստորակարգ ձևերի մոտ, լյարդում, ողնուղեղում, մկաններում, ողնաշարավորների  շարակցական հյուսվածքում։ Սովորական մանրադիտակով բջջակորիզը երևում է որպես մի բուշտ, որում առանձնանում է կորիզակը։ Առանձին դեպքերում պատահում են բջիջներ, իրենց բնույթով և ֆունկցիայով երկու կորիզներով՝ մեծ կամ մակրոնուկլեուս և փոքր կամ միկրոնուկլեուս։ Հայտնի են նաև կորիզազրկվող բջիջներ. օրինակ՝ կաթնասունների էրիթրոցիտները, որոնք իրենց զարգազման ընթացքում կորցնում են կորիզը: 

Ռիբոսոմներ

Ռիբոսոմներ,բջջիմեմբրան չունեցող օրգանոիդներն են, որոնցում կատարվում է սպիտակուցի կենսասինթեզ:

Ռիբոսոմները բջջային ամենափոքր օրգանոիդներն են, սովորական լուսային մանրադիտակով անտեսանելի։ Պրոկարիոտ բջիջների ռիբոսոմների տրամագիծը 20 նմ, իսկ էուկարիոտիկ բջիջներինը՝ 25-30 նմ է։ Ռիբոսոմների հայտնաբերումը և նրանց ուսումնասիրությունը հնարավոր դարձավ միայն էլեկտրոնային մանրադիտակի օգնությամբ։

Էնդոպլազմային ցանց

Էնդոպլազմային ցանցը խողովակների, խորշերի կամ բշտաձև մանր հատիկների մի բարդ համակարգ է՝ կազմված լիպոպրոտեիդների 7,5 նմ տրամագծով երկու շերտերի թաղանթից։ Էնդ. ցանցը ունի մինչև 50 նմ երկարություն։ Խողովակներն ու խորշերը խորշերը կազմում են մի ճյուղավոր, ամբողջ բջջապլազմայի մեջ ներթափանցված ցանց, որը պայմանավորում է նրա անվանումը։ Նա առավել զարգացած է այն բջիջներում, որոնցում սպիտակուցի սինթեզը ավելի ակտիվ է ընթանում (երիտասարդ բջիջներում, գեղձերի բջիջներում), և, ընդհակառակը, թույլ է զարգացած այն բջիջներում, որոնցում ոչ մեծ քանակությամբ սպիտակուց է սինթեզվում (լիմֆատիկ հանգույցների բջիջներում, փայծաղի բջիջներում)։ Էնդոպլազմային ցանցը լինում է հարթ կամ ողորկ և հատիկավոր։ Հարթ էնդ. ցանցի արտաքին շերտը հարթ է, այսինքն զուրկ է ռիբոսոմներից, իսկ հատիկավոր էնդ. ցանցի արտաքին շերտը գրանուլյար է՝ հատիկավոր։ Այդ հատիկները, որոնց տրամագիծը հասնում է մինչև 15 նմ, հարուստ են ՌՆԹ-ով և կրում են ռիբոսոմներ անվանումը։ Հարթ էնդ. ցանցի վրա կան ճարպեր և մոնոսախարիդներ սինթեզող ֆերմենտային համակարգեր, իսկ ռիբոսոմներ կրող էնդոպլազմային ցանցի վրա՝ սպիտակուցներ սինթեզող համակարգեր:

Գոլջիի ապարատ

Գոլջիի ապարատ, էնդոպլազմային ցանցի հետ սերտորեն կապված հարթ, միաշերտ մեմբրաններից կազմված խորշեր, խողովակների, ակոսների և բշտիկների համակարգ է, որտեղ ձևավորվում են լիզոսոմները, վակուոլները և սեկրետները, ընթանում է կուտակվում և դուրս են բերվում փոխանակության նյութերը։ Գոլջի կոմպլեքսը մասնակցում է պլազմային թաղանթի գոյացմանը։

Միտոքոնդրումներ

Միտոքոնդրումներ, բջջի ընդհանուր նշանակության օրգանոիդներից են։ Հայտնաբերվել են բոլոր բուսական և կենդանական բջիջներում, ունեն 1-5 մկմ տրամագծով հատիկների, ձողիկների, թելիկների տեսք։ Ունի 5-7 մկմ երկարություն։

Միտոքոնդրիումները հարուստ են սպիտակուցներով, պարունակում են լիպիդներ և ոչ մեծ քանակությամբ ՌՆԹ։ Էլեկտրոնային մանրադիտակի տակ երևում է միտոքոնդրիումների երկու շերտից կազմված՝ 10-25 նմ թաղանթը։ Արտաքին թաղանթը հարթ է, դրանում քիչ են սպիտակուցները և շատ են ֆոսֆոլիպիդները։ Ներքին թաղանթն առաջացնում է բազմաթիվ ծալքեր կամ ներփքումներ՝ կատարներ (կրիստաներ), որոնք ուղղված են դեպի միտոքոնդրիումի ներքին խոռոչը։ §Կրիստաներ¦ բառը առաջացել է լատիներեն §կրիստ¦-ելուստ, սանր բառից։ Թաղանթներից յուրաքանչյուրը կազմված է երեք շերտից՝ երկու շերտ սպիտակուցային մոլեկուլներից և մեկը՝ միջինը, ճարպային մոլեկուլներից։ Որքան ակտիվ է տեղի ունենում այն նյութերի սինթեզը, որոնք պահանջում են մեծ էներգիա, այնքան ուժեղ են զարգացած և խիտ են կրիստաները միտոքոնդրիումներում։ Այդ պատճառով էլ ենթադրվում է, որ նրանք սերտորեն կապված են մակրոէրգիկ նյութերի սինթեզի հետ։ Կատարների մակերեսին կա ԱԵՖ սինթեզող ֆերմենտների շղթա, որտեղ և կատարվում է ԱԵՖ-ի սինթեզ, իսկ արտաքին մեմբրանում՝ ճեղքում։ Ներքին թաղանթով սահմանափակված տարածությունը անվանում են մատրիքս։